Second Hand Marijuana Smoke: What do we know?

Kristen Keteles, Ph.D.

Toxicologist
USEPA Region 8

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Longmont, Colorado Couple: Second Hand Pot Smoke is Endangering Baby

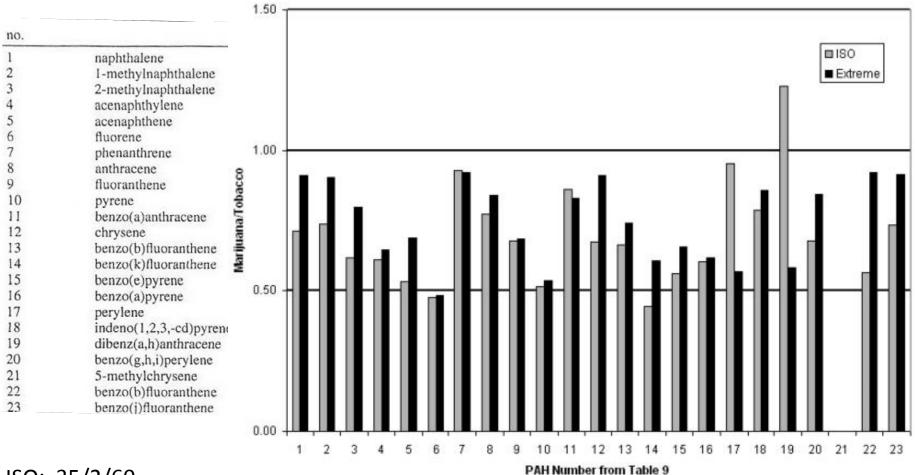
Active and Passive Chemical Exposure from MJ: An Emerging Issue

- Combustion of plant material will result in a complex chemical mixture in smoke
- Although tobacco smoking is decreasing, MJ use may be increasing
- Tobacco smoke chemistry has been well characterized: 4000 chemicals, >50 carcinogens (Hoffman et al. 2001)
- 1992 EPA report "Respiratory Health Effects of Passive [Tobacco] Smoking: Lung Cancer and Other Disorders"
- Few investigations characterizing MJ smoke; qualitative investigations suggest MJ has similar carcinogens as tobacco smoke.

Mainstream and Sidestream smoke, Tobacco vs. Marijuana (Moir et al. 2008)

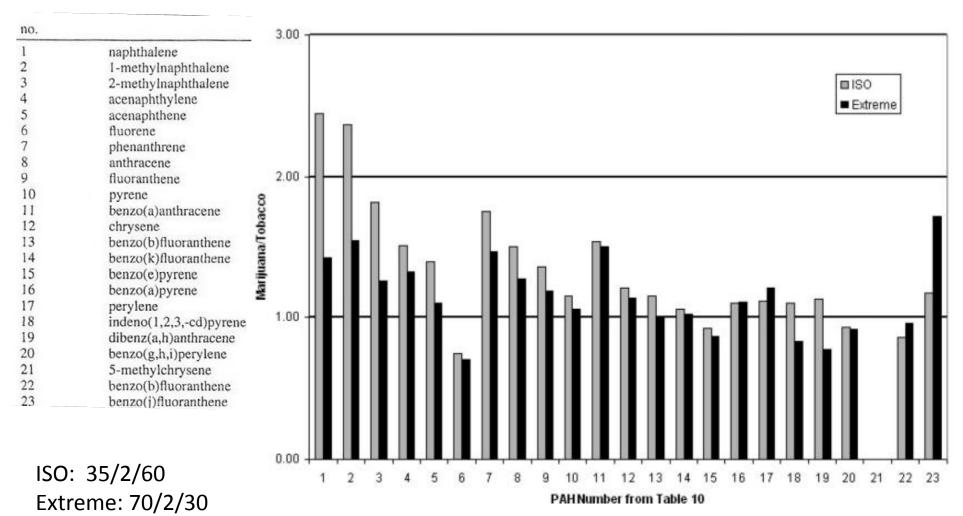
- MJ smoke contains many of the same chemicals as tobacco smoke
- Some chemicals were 3-5x higher in MJ smoke: NO, NOx, HCN, and aromatic amines; Ammonia 20x higher in MJ smoke
- PAHs, Formaldehyde, and Acetaldehyde moderately higher in mainstream Tobacco smoke.
- In sidestream smoke, higher levels of a number of PAHs in MJ smoke were measured.
- Note: levels may vary with sample and smoking conditions

Various Analytes Including Tobacco-Specific Compounds and Heavy Metals Determined in Mainstream Smoke from Tobacco and Marijuana under Two Smoking Conditions^a


	ISO		extreme	
	tobacco	marijuana	tobacco	marijuana
tar (mg/cig)	38.2 ± 2.2	37.4 ± 4.5	80.3 ± 5.6	103 ± 11*
pH	5.5 ± 0.05	$7.21 \pm 0.17*$	5.47 ± 0.04	$7.73 \pm 0.10*$
NO (μg/cig)	65.7 ± 8.9	296 ± 33*	151 ± 10	$685 \pm 58*$
NOx (µg/cig)	68.2 ± 9.2	$302 \pm 33*$	158 ± 10	693 ± 58*
CO (mg/cig)	20.8 ± 1.9	$13.4 \pm 1.6*$	41.5 ± 4	$35.3 \pm 2.9*$
nicotine (mg/cig)	2.44 ± 0.18	$0.005 \pm 0.011*$	5.2 ± 0.39	0.002-0.007*
ammonia (µg/cig)	35.5 ± 2.4	$720 \pm 84*$	67 ± 9.9	1315 ± 106*
HCN (µg/cig)	208 ± 24	$526 \pm 46*$	320 ± 29	$1668 \pm 159*$
NNN	87.6 ± 4.4	<1.49*	160 ± 15	<1.49*
NAT	71 ± 3.4	<1.87*	125 ± 9	<1.87*
NAB	5.68 ± 0.42	< 0.063*	8.26 ± 0.47	0.063-2.00*
NNK	86.7 ± 5.2	<3.72*	158 ± 15	<3.72*
mercury	3.17 ± 0.32	<1.10*	5.35 ± 0.52	$3.51 \pm 0.31*$
cadmium	145 ± 8	$6.91 \pm 1.34*$	284 ± 7	$14.6 \pm 1.2*$
lead	21.1 ± 1.1	3.85-12.8*	43.8 ± 2.9	7.7-25.7*
chromium	5.94-19.8	5.94 - 19.8	11.9 - 39.6	11.9-39.6
nickel	6.47 - 21.6	6.47 - 21.6	12.9 - 43.1	<12.9
arsenic	5.49 ± 0.33	1.13-3.75*	12.7 ± 0.9	2.25-7.49*
selenium	2.21-7.37	2.21-7.37	4.42 - 14.7	4.42-14.7

"Values are provided \pm standard deviations. For tar, nicotine, and CO, n=20. For all others, n=7. Units are ng/cigarette unless noted differently. *P < 0.05 vs tobacco. Values shown with "<" were below the limit of detection; values shown as a range were above the limit of detection but below the limit of quantitation.

MJ:Tobacco Ratios of PAHs in Mainstream Smoke Under Two Smoking Conditions (Moir et al. 2008)



ISO: 35/2/60

Extreme: 70/2/30

Volume puff in ml/ Duration puff in seconds/ Interval between puffs in seconds

MJ:Tobacco Ratios of PAHs in Sidestream Smoke Under Two Smoking Conditions (Moir et al. 2008)

Volume puff in ml/ Duration puff in seconds/ Interval between puffs in seconds

Passive Exposure to THC?

- Combustion of cannabis, tetrahydrocannabinol-acid precursors converted to delta-9-tetrahydrocannabinal (THC)
- 50% THC survives pyrolysis, a portion delivered to smoker, a lesser but significant amount is released into air
- Passive exposure dependent on
 - Duration
 - THC content of marijuana
 - Amount of marijuana smoked
 - Environmental conditions

SHS THC Exposure Studies

- Passive inhalation could result in absorption of sufficient amounts of THC to produce low, but detectable levels of THC in blood and urine (Perez-Reyes et al 1983; Mason et al 1983; Morland et al. 1985)
- Intense MJ smoke exposure, passive inhalers report behavioral effects similar to those when they actively smoked marijuana (Cone and Johnson, 1986)
- Significant amounts of THC were absorbed by subjects at a high level (16 "joints" 2.8% TCH) of passive smoke exposure, resulting in urinary excretion of cannabinoid metabolites (Cone et al. 1987)

In Summary

- MJ smoke contains many of the same cytotoxic, mutagenic, and carcinogenic components of tobacco smoke
- Levels of chemicals may vary among strain and cultivation techniques
- Causal links between MJ smoke and disease including lung cancer have not been established
- High levels of THC in smoke can result in passive exposure
- With 2-7x higher THC concentrations in modern cannabis, THC concentrations in SHS may be higher than reported in previous studies.